PIG MANURE AND EFFLUENT MANAGEMENT IN VIETNAM

Dinh Thi Hai Van, Nguyen Thanh Lam, Cao Truong Son, Vo Huu Cong, Pham Ngoc Bao, Tetsuo Kuyama

1) Dept. of Environmental Management, VNUA
2) Institute for Global Environmental Strategies

Feb 21, 2017
Farm size and its distribution across the country

Table 1: Distribution of pig population per geographical locations

<table>
<thead>
<tr>
<th>Regions</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red river delta</td>
<td>7,092.2</td>
<td>6,855.2</td>
<td>6,759.5</td>
<td>6,824.8</td>
<td>7,061.3</td>
</tr>
<tr>
<td>Northern midlands & mountainous areas</td>
<td>6,424.9</td>
<td>6,346.9</td>
<td>6,328.8</td>
<td>6,626.4</td>
<td>6,841.2</td>
</tr>
<tr>
<td>North & South Central coastal areas</td>
<td>5,253.3</td>
<td>5,084.9</td>
<td>5,099.4</td>
<td>5,270.5</td>
<td>5,368.1</td>
</tr>
<tr>
<td>Central Highlands</td>
<td>1,711.7</td>
<td>1,704.1</td>
<td>1,722.3</td>
<td>1,742.4</td>
<td>1,797.3</td>
</tr>
<tr>
<td>Southeast</td>
<td>2,801.4</td>
<td>2,780.0</td>
<td>2,758.8</td>
<td>2,890.1</td>
<td>3,093.6</td>
</tr>
<tr>
<td>Mekong River Delta</td>
<td>3,772.5</td>
<td>3,722.9</td>
<td>3,595.6</td>
<td>3,470.4</td>
<td>3,589.3</td>
</tr>
</tbody>
</table>

Unit: thousands
Figure 1: Distribution of pig farms according to geographical locations

Source: Vietnam GSO, 2013
Scale of pig farming in Vietnam

Table 2: Distribution of Small – scale pig farming households according to pig quantity

<table>
<thead>
<tr>
<th>Regions</th>
<th>Total</th>
<th>According to quantity of pig per household</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1-2 pigs</td>
</tr>
<tr>
<td>Total</td>
<td>4,131.6</td>
<td>2,144.0</td>
</tr>
<tr>
<td>Red river delta</td>
<td>870.7</td>
<td>454.4</td>
</tr>
<tr>
<td>Northern midlands & mountain areas</td>
<td>1,204.3</td>
<td>615.5</td>
</tr>
<tr>
<td>North Central & Central coastal areas</td>
<td>1,238.8</td>
<td>709.9</td>
</tr>
<tr>
<td>Central Highlands</td>
<td>210.8</td>
<td>106.3</td>
</tr>
<tr>
<td>South East</td>
<td>110.2</td>
<td>30.1</td>
</tr>
<tr>
<td>Mekong River Delta</td>
<td>496.7</td>
<td>227.9</td>
</tr>
</tbody>
</table>

Unit: thousands

Source: Vietnam GSO, 2012
Scale of pig farming household

Table 3: Size of pig households in study sites

<table>
<thead>
<tr>
<th>Study sites</th>
<th>Value</th>
<th>< 5 pigs</th>
<th>5–20 pigs</th>
<th>20–50 pigs</th>
<th>>50 pigs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thai Binh</td>
<td>Number</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(%)</td>
<td>40</td>
<td>50</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Bac Giang</td>
<td>Number</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(%)</td>
<td>50</td>
<td>40</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Ha Noi</td>
<td>Number</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>(%)</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>Thanh Hoa</td>
<td>Number</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(%)</td>
<td>40</td>
<td>60</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>Number</td>
<td>13</td>
<td>17</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>(%)</td>
<td>32.5</td>
<td>42.5</td>
<td>10</td>
<td>15</td>
</tr>
</tbody>
</table>
Wastewater characterization

Table 4: Characteristic of piggeries wastewater in Gia Lam District, Ha Noi

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unit</th>
<th>Type of pig production</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Porker</td>
</tr>
<tr>
<td>pH</td>
<td>-</td>
<td>6.73</td>
</tr>
<tr>
<td>TSS</td>
<td>mg/l</td>
<td>4,735</td>
</tr>
<tr>
<td>TN</td>
<td>mg/l</td>
<td>106.03</td>
</tr>
<tr>
<td>NO₃⁻</td>
<td>mg/l</td>
<td>4.21</td>
</tr>
<tr>
<td>NH₄⁺</td>
<td>mg/l</td>
<td>97.72</td>
</tr>
<tr>
<td>TP</td>
<td>mg/l</td>
<td>62.33</td>
</tr>
</tbody>
</table>

Source: Nguyen Thi Thuy Dung et al, 2015
Table 5: Fish ponds’ water quality of VAC systems in Hung Yen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Standard deviation</th>
<th>Mean</th>
<th>QCVN08: 2008/BTNMT Column A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.11-7.41</td>
<td>7.30</td>
<td>6.0-8.5</td>
</tr>
<tr>
<td>COD (mg/L)</td>
<td>120-240</td>
<td>160</td>
<td>15</td>
</tr>
<tr>
<td>DO (mg/L)</td>
<td>3.50-5.54</td>
<td>4.52</td>
<td>>= 5</td>
</tr>
<tr>
<td>NH₄⁺ (mg/L)</td>
<td>1.36-4.64</td>
<td>3.00</td>
<td>0.2</td>
</tr>
<tr>
<td>NO₃⁻ (mg/L)</td>
<td>1.16-2.88</td>
<td>2.20</td>
<td>5.0</td>
</tr>
<tr>
<td>PO₄³⁻ (mg/L)</td>
<td>1.90-4.87</td>
<td>3.20</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Source: Cao Truong Son et al, 2010
Current practices and existing technical approaches for pig manure management and treatment

Table 6: Proportion of piggery waste treatment methods in some provinces

<table>
<thead>
<tr>
<th>Effluent management</th>
<th>Province (Unit: %)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hung Yen¹</td>
</tr>
<tr>
<td>Biogas</td>
<td>47.6</td>
</tr>
<tr>
<td>Compost</td>
<td>9.5</td>
</tr>
<tr>
<td>Used for plant</td>
<td>38.1</td>
</tr>
<tr>
<td>Directly discharge into environment</td>
<td>28.6</td>
</tr>
<tr>
<td>Discharge to fish ponds</td>
<td>52.4</td>
</tr>
<tr>
<td>Collection for sale</td>
<td>28.6</td>
</tr>
<tr>
<td>Stored</td>
<td>-</td>
</tr>
</tbody>
</table>

Waste management at farm scale

Figure 2: Application of waste treatment technology at farm scale
Figure 3: The rate of applicable treatment of waste disposal as household scale
National technical standards on pig’s manure management

Table 7: Regulations and Legislations on livestock sector and pig farming

<table>
<thead>
<tr>
<th>National technical standards</th>
<th>Regulations and Legislations on livestock sector and pig farming</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 81/2009/TT-BNNPTNT</td>
<td>Circular on National Technique regulations on animal feed</td>
<td>25/12/2009</td>
</tr>
<tr>
<td>2 04/2010/TT-BNNPTNT</td>
<td>Circular on promulgating national technical regulations on conditions for biosafety pig farms, poultry farms;</td>
<td>15/01/2010</td>
</tr>
<tr>
<td>3 61/2011/TT-BNNPTNT</td>
<td>Circular on National Technique regulations on animal feed</td>
<td>12/09/2011</td>
</tr>
<tr>
<td>4 23/2012/TT-BNNPTNT</td>
<td>Circular on amending and supplementing some national technical standards of animal feed.</td>
<td>18/06/2012</td>
</tr>
</tbody>
</table>
Estimation of the emission coefficient

Silts (120 days)
- Bran: 276 kg/head
- DrinKing water: 1,020 l/head
- Washing water: 2628 L/head
- Urine: 408 l/head
- Washing: 2.628 l/head
- Manure: 168 kg/head

Nursuring (25 days)
- Bran: 57.5 kg/head
- Drinking water: 110 l/head
- Washing water: 547.5L/head
- Urine: 115 l/head
- Washing: 547.5 l/head
- Manure: 55 kg/head

Pig weight <15kg (30 days)
- Bran: 12 kg/con
- Drinking water: 21 L/head
- Washing water: 966L/head
- Manure: 3kg/con
- Urine: 6L/head
- Washing water: 966L/head

Pig weight 15-30kg (30 days)
- Bran: 24kg/con
- Drinking water: 69L/con
- Washing water: 495L/con
- Manure: Urine: 9L/head
- Washing water: 495L/head

Pig weight :30-60kg (120 days)
- Bran: 50kg/con
- Drinking water: 185L/con
- Washing water: 1115L/con
- Manure: Urine: 30kg/con
- Washing water: 495L/con

Pig weight : >60kg (45 days)
- Bran: 117kg/con
- Drinking water: 202,5L/con
- Washing water: 927L/con
- Manure: Urine: 90kg/con
- Washing water: 495L/con

Procedure for sows production
- Life cycle: 145 days (5 months): silts 120 days, nursering 25 days
- Bran: 333,5 kg/head
- Drinking water: 1.130L/head
- Washing water: 3.175,5L/head
- Manure: 223 kg/head
- Urine: 523L/head

Porker Lifetime:
- 150 days
- Bran: 233kg
- Drinking water: 477,5L/head
- Manure: 135kg/head
- Urine: 254L/head
- Washing water: 3.503L/head

Figure 4: Estimation of the quota on material consumption and waste generation at a farm scale
Table 8: Material usage and waste generation per head of a pig in a process at scale farming households

<table>
<thead>
<tr>
<th>Material</th>
<th>Type of pig</th>
<th>Sows</th>
<th>Porker</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quota</td>
<td>Time</td>
<td>Total waste</td>
</tr>
<tr>
<td></td>
<td>(kg/head/day)</td>
<td>(day)</td>
<td>(l/head)</td>
</tr>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comercial bran</td>
<td>2.0</td>
<td>190</td>
<td>380</td>
</tr>
<tr>
<td>Rice bran</td>
<td>2.4</td>
<td>190</td>
<td>456</td>
</tr>
<tr>
<td>Corn bran</td>
<td>2.6</td>
<td>190</td>
<td>494</td>
</tr>
<tr>
<td>Vegetable</td>
<td>3.8</td>
<td>190</td>
<td>722</td>
</tr>
<tr>
<td>Drinking water</td>
<td>9.0</td>
<td>190</td>
<td>1,710</td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manure</td>
<td>1.4</td>
<td>190</td>
<td>266</td>
</tr>
<tr>
<td>Urine</td>
<td>3.4</td>
<td>190</td>
<td>646</td>
</tr>
<tr>
<td>Washing water</td>
<td>21.9</td>
<td>190</td>
<td>4,161</td>
</tr>
</tbody>
</table>

N = 40 (household)
Development of a scientific framework for better understanding of nutrient flows (MFA) from pig farms

INPUTS

1. Pig breeds
2. Industry bran
3. Rice bran
4. Corn bran
5. Mating fee
6. Electric power
7. Water
8. Veterinary medicine
9. Anti-microbial

OUTPUTS

- Manure
- Urine
- Waste water
- BOD
- COD
- pH
- TSS
- T-N
- T-Coliform

Figure 5: Nutrient flow in the pig farm
(Volatile, compost, runoff lost, selling production)
Table 9: The volume of pollutants generated per pig life cycle at farm scale

<table>
<thead>
<tr>
<th>Types of pig</th>
<th>Wastewater (L/head)</th>
<th>COD kg/head</th>
<th>BOD kg/head</th>
<th>TS kg/head</th>
<th>TN kg/head</th>
<th>TP kg/head</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silts</td>
<td>408</td>
<td>0.43</td>
<td>0.40</td>
<td>0.67</td>
<td>0.112</td>
<td>5.182</td>
</tr>
<tr>
<td>Nursering</td>
<td>115</td>
<td>0.37</td>
<td>0.24</td>
<td>0.56</td>
<td>0.261</td>
<td>0.105</td>
</tr>
<tr>
<td>Life cycle</td>
<td>523</td>
<td>0.80</td>
<td>0.64</td>
<td>1.23</td>
<td>0.373</td>
<td>5.287</td>
</tr>
<tr>
<td>Porker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><15 kg</td>
<td>6</td>
<td>0.01</td>
<td>5.56</td>
<td>0.006</td>
<td>0.003</td>
<td>0.030</td>
</tr>
<tr>
<td>15-30 kg</td>
<td>9</td>
<td>0.03</td>
<td>18.71</td>
<td>0.041</td>
<td>0.018</td>
<td>0.090</td>
</tr>
<tr>
<td>30 - 60 kg</td>
<td>95</td>
<td>0.29</td>
<td>187.48</td>
<td>0.040</td>
<td>0.203</td>
<td>1.197</td>
</tr>
<tr>
<td>> 60 kg</td>
<td>144</td>
<td>0.50</td>
<td>324.72</td>
<td>0.073</td>
<td>0.536</td>
<td>1.872</td>
</tr>
<tr>
<td>Life cycle</td>
<td>254</td>
<td>0.83</td>
<td>536.47</td>
<td>0.16</td>
<td>0.76</td>
<td>3.189</td>
</tr>
</tbody>
</table>
Table 10: Load of pollution generated per pig head from washing water during a production cycle

<table>
<thead>
<tr>
<th>Types of pigs</th>
<th>Wastewater (L/head)</th>
<th>COD kg/head</th>
<th>BOD kg/head</th>
<th>TS kg/head</th>
<th>TN kg/head</th>
<th>TP kg/head</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilts</td>
<td>408</td>
<td>0.49</td>
<td>0.39</td>
<td>1.11</td>
<td>0.11</td>
<td>5.18</td>
</tr>
<tr>
<td>Nursering</td>
<td>115</td>
<td>0.40</td>
<td>0.23</td>
<td>0.28</td>
<td>0.02</td>
<td>1.58</td>
</tr>
<tr>
<td>Life cycle</td>
<td>523</td>
<td>0.89</td>
<td>0.72</td>
<td>1.39</td>
<td>0.13</td>
<td>6.76</td>
</tr>
<tr>
<td>Porker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><15 kg</td>
<td>6</td>
<td>0.004</td>
<td>0.003</td>
<td>0.003</td>
<td>0.001</td>
<td>0.040</td>
</tr>
<tr>
<td>15-30 kg</td>
<td>9</td>
<td>0.005</td>
<td>0.004</td>
<td>0.004</td>
<td>0.001</td>
<td>0.064</td>
</tr>
<tr>
<td>30 - 60 kg</td>
<td>95</td>
<td>0.140</td>
<td>0.080</td>
<td>0.060</td>
<td>0.010</td>
<td>0.990</td>
</tr>
<tr>
<td>> 60 kg</td>
<td>144</td>
<td>0.290</td>
<td>0.170</td>
<td>0.370</td>
<td>0.020</td>
<td>1.680</td>
</tr>
<tr>
<td>Life cycle</td>
<td>254</td>
<td>0.439</td>
<td>0.257</td>
<td>0.437</td>
<td>0.032</td>
<td>2.774</td>
</tr>
</tbody>
</table>
Table 11: Load of pollution generated per pig head from waste manure during a production cycle

<table>
<thead>
<tr>
<th>Type of pig</th>
<th>Waste manure (kg/head)</th>
<th>OM kg/head</th>
<th>TN kg/head</th>
<th>TP kg/head</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sows</td>
<td>Manure</td>
<td>223</td>
<td>4.3</td>
<td>2</td>
</tr>
<tr>
<td>Porker</td>
<td>Manure of porker <15 kg</td>
<td>3</td>
<td>4.24</td>
<td>2.99</td>
</tr>
<tr>
<td></td>
<td>Manure of porker 15-30 kg</td>
<td>12</td>
<td>8.43</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>Manure of porker 30-60 kg</td>
<td>30</td>
<td>3.72</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td>Manure of porker > 60kg</td>
<td>90</td>
<td>4.17</td>
<td>2.06</td>
</tr>
<tr>
<td>Total production cycle</td>
<td></td>
<td>135</td>
<td>20.56</td>
<td>6.59</td>
</tr>
</tbody>
</table>
Table 12: Parameters and equations for estimating nitrogen flow in pig production

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description of data</th>
<th>Unit</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>a feed_porker</td>
<td>Daily food for porker</td>
<td>kg food/head/day</td>
<td>1.4</td>
<td>0.3</td>
</tr>
<tr>
<td>d porker</td>
<td>Growing duration of porker</td>
<td>day</td>
<td>180.0</td>
<td>0.0</td>
</tr>
<tr>
<td>a feed_sow</td>
<td>Daily food for sow</td>
<td>kg food/head/day</td>
<td>2.7</td>
<td>0.1</td>
</tr>
<tr>
<td>d sow</td>
<td>Growing duration of sow</td>
<td>day</td>
<td>150.0</td>
<td>0.0</td>
</tr>
<tr>
<td>CN feed_pig</td>
<td>Nitrogen content in commercial food for pig</td>
<td>gN/kg food</td>
<td>26.0</td>
<td>0.0</td>
</tr>
<tr>
<td>n man-porker</td>
<td>Daily manure of porker</td>
<td>kg/head/day</td>
<td>0.9</td>
<td>0.4</td>
</tr>
<tr>
<td>n man-sow</td>
<td>Daily manure of sow</td>
<td>kg/head/day</td>
<td>1.5</td>
<td>0.2</td>
</tr>
<tr>
<td>aN man-porker</td>
<td>Nitrogen load in porker' manure</td>
<td>gN/kg</td>
<td>26.1</td>
<td>0.0</td>
</tr>
<tr>
<td>aN man_sow</td>
<td>Nitrogen load in sow' manure</td>
<td>gN/kg</td>
<td>39.2</td>
<td>0.0</td>
</tr>
<tr>
<td>n urine_porker</td>
<td>Daily urine of porker</td>
<td>l/head/day</td>
<td>1.6</td>
<td>0.9</td>
</tr>
<tr>
<td>n urine_sow</td>
<td>Daily urine of sow</td>
<td>l/head/day</td>
<td>3.2</td>
<td>0.4</td>
</tr>
<tr>
<td>aN urine_porker</td>
<td>Nitrogen load in porker' urine</td>
<td>g/l</td>
<td>3.7</td>
<td>0.0</td>
</tr>
<tr>
<td>aN urine_sow</td>
<td>Nitrogen load in sow' urine</td>
<td>g/l</td>
<td>7.4</td>
<td>0.0</td>
</tr>
<tr>
<td>n wastewater_porker</td>
<td>Daily wastewater of porker</td>
<td>l/head/day</td>
<td>20.5</td>
<td>9.6</td>
</tr>
<tr>
<td>n wastewater_sow</td>
<td>Daily wastewater of sow</td>
<td>l/head/day</td>
<td>21.7</td>
<td>2.8</td>
</tr>
<tr>
<td>aN wastewater_porker</td>
<td>Nitrogen load in porker' wastewater</td>
<td>g/l</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>aN wastewater_sow</td>
<td>Nitrogen load in sow' wastewater</td>
<td>g/l</td>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>rN emis_pig man</td>
<td>Ratio of N gas losses to N manure pigs</td>
<td></td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Y pork</td>
<td>Yield of porker</td>
<td>kg/head</td>
<td>123.3</td>
<td>11.6</td>
</tr>
<tr>
<td>CN pork</td>
<td>Nitrogen content in pork</td>
<td>gN/kg meat</td>
<td>26.0</td>
<td>0.0</td>
</tr>
<tr>
<td>N piglet</td>
<td>Number of piglet</td>
<td>No/head</td>
<td>12.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Weight of pitlet</td>
<td>Weight of pitlet</td>
<td>kg</td>
<td>7.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Table 13: Parameters and equations for estimating nitrogen flow in pig production

<table>
<thead>
<tr>
<th>Flow</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balance equation</td>
<td>Porker $\text{IN}{\text{porker}} - (\text{OUT}{1} + \text{OUT}{2} + \text{OUT}{3} + \text{OUT}{4} + \text{OUT}{5})$</td>
</tr>
<tr>
<td></td>
<td>Sow $\text{IN}{\text{sow}} - (\text{OUT}{6} + \text{OUT}{7} + \text{OUT}{8} + \text{OUT}{9} + \text{OUT}{10})$</td>
</tr>
<tr>
<td>Input</td>
<td>IN_porker $a \text{feed}{\text{porker}} \times d{\text{porker}} \times CN_{\text{feed}_{\text{pig}}}$</td>
</tr>
<tr>
<td></td>
<td>IN_sow $a \text{feed}{\text{sow}} \times d{\text{sow}} \times CN_{\text{feed}_{\text{pig}}}$</td>
</tr>
<tr>
<td>Output</td>
<td>OUT_porker 1 $n \text{man}{\text{porker}} \times d{\text{porker}} \times aN_{\text{man}_{\text{porker}}}$</td>
</tr>
<tr>
<td></td>
<td>OUT_porker 2 $n \text{urine}{\text{porker}} \times d{\text{porker}} \times aN_{\text{urine}_{\text{porker}}}$</td>
</tr>
<tr>
<td></td>
<td>OUT_porker 3 $n \text{wastewater}{\text{porker}} \times d{\text{porker}} \times aN_{\text{wastewater}_{\text{porker}}}$</td>
</tr>
<tr>
<td></td>
<td>OUT_porker 4 $n \text{man}{\text{porker}} \times aN{\text{man}{\text{porker}}} \times d{\text{porker}} \times rN_{\text{emis}{\text{pig}}}{\text{man}}$</td>
</tr>
<tr>
<td></td>
<td>OUT_porker 5 $Y_{\text{pork}} \times CN_{\text{pork}}$</td>
</tr>
<tr>
<td></td>
<td>OUT_sow 6 $n \text{man}{\text{sow}} \times d{\text{sow}} \times aN_{\text{man}_{\text{sow}}}$</td>
</tr>
<tr>
<td></td>
<td>OUT_sow 7 $n \text{urine}{\text{sow}} \times d{\text{sow}} \times aN_{\text{urine}_{\text{sow}}}$</td>
</tr>
<tr>
<td></td>
<td>OUT_sow 8 $n \text{wastewater}{\text{sow}} \times d{\text{sow}} \times aN_{\text{wastewater}_{\text{sow}}}$</td>
</tr>
<tr>
<td></td>
<td>OUT_sow 9 $n \text{man}{\text{sow}} \times d{\text{sow}} \times aN_{\text{man}{\text{sow}}} \times rN{\text{emis}{\text{pig}}}{\text{man}}$</td>
</tr>
<tr>
<td></td>
<td>OUT_sow 10 $n \text{piglet} \times \text{weight of piglet} \times CN_{\text{piglet}}$</td>
</tr>
</tbody>
</table>
Key findings

• Recently, increase of pig population posed high pressure on treatment systems

• Almost effluents of treated wastewater from biogas digesters higher than the national standards

• Given newly established regulation (QCVN:62-MT:2016/BTNTM), the number of observed parameters remains only 6 (pH, BOD, COD, TN, Coliform, TSS).

• Farmer used so much water during a life cycle of pigs.