Implementation of TMDL in Korea

January 31, 2024

Suyoung Park, Ph. D

Watershed & Total Load Management Research Division National Institute of Environmental Research, Incheon, Korea

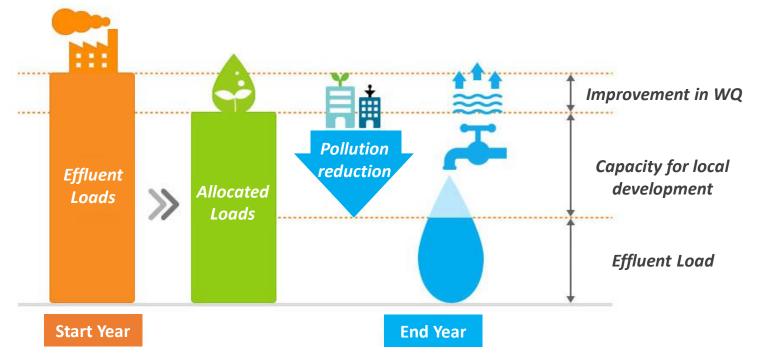
Table of Contents

- I. Overview of TMDL in Korea
- II. Performance of TMDL in Korea
- III. Current issues of TMDL in Korea

/ . Overview of TMDL in Korea

Background for implementing the TMDL

- Water quality management system considering population density in the watershed.
 - The densely populated human and industrial concentration along the downstream and midstream of rivers poses limitations in achieving environmental standards.
- Limitations of regulation based on WQ conc.
 - The concentration-based regulation focused on existing discharge permit standards has proven challenging in controlling the quantitative increase in pollution loads


"Requirement for an enhanced WQ management system that takes into account both WQ conc. & Loads"

What is a TMDL?

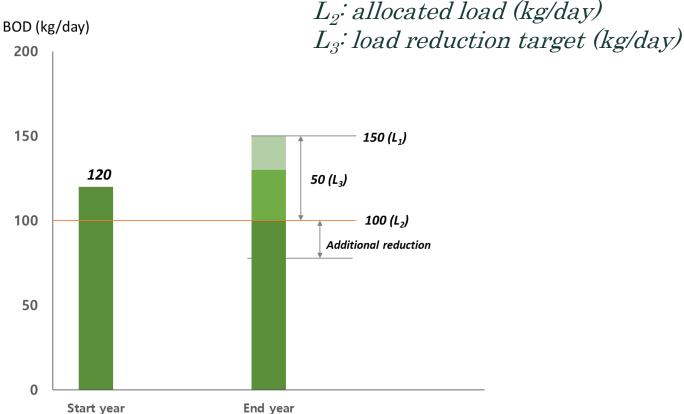
Total Maximum Daily Load

 A watershed management system that establishes achievable water quality goals at the downstream point of the watershed. It aims to reduce pollutants within the allowable total load (allocation) range.

What is a TMDL?

 L_t : pollutant load target (kg/day)

 C_t : water quality target (mg/L)


 Q_s : standard flow (m³/s)

 L_1 : effluent load (kg/day)

Total Maximum Daily Load

$$L_t = C_t \times Q_s$$

$$L_1 \le L_2$$

National Institute of Environmental Research

Implement Procedure of TMDL in Korea

Allocated pollution loads by unit-watershed or basic local government

Implementation Plan on TMDL Management

Allocated pollution loads by the kinds of sources of pollution and polluters

Performance by Public Sector

Expansion of sewage treatment facilities, Improvement of discharge water quality etc.

Performance by Private Sector

Improvement of pollution prevention facilities, Improvement of discharge water quality etc.

1

Performance Assessment

Assessment of pollution sources, pollution load, and reduction performance

Stage Assessment

Assessment of compliance with water quality target and allocated pollutant load

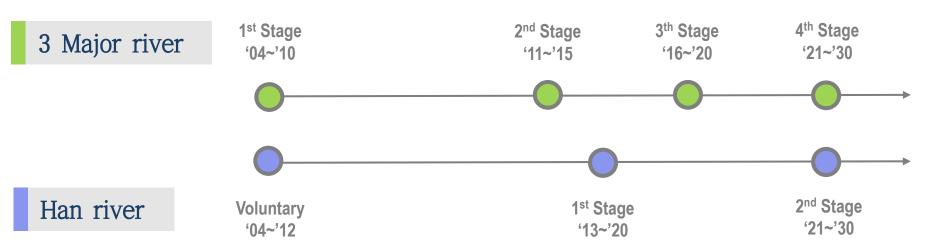
Process for achieving consensus

"Communication & collaboration between Central & Local governments"

⇒ The process may be challenging and prolonge, yet both parties persist in reaching a consensus

Central gov.

- Decision
- Decision
- Approval
- Review
- Review


- Selection of Target WQ parameters
- Establishment of WQ target
- ▶ Basic plan on TMDL management
- Implementation plan on TMDL management
- Performance assessment

Local gov.

- Consultation
- Consultation
- Establishment
- Establishment, Approval
- Evaluation

Process since introduction of the TMDL

	Han River	3 Major river (Nakdong, Geum, and Yeongsan river)	
Voluntary system	(Period) 2004~2012 (Target WQ parameter) BOD	1 st stage	(Period) 2004~2010 (Target WQ parameter) BOD
1 st stage	(Period) 2013~2020 (Target WQ parameter) BOD, T-P	2 nd stage	(Period) 2011~2015 (Target WQ parameter) BOD, T-P
2 nd stage	(Period) 2021~2030 (Target WQ parameter) BOD, T-P	3 th stage	(Period) 2016~2020 (Target WQ parameter) BOD, T-P
		4 th stage	(Period) 2021~2030 (Target WQ parameter) BOD, T-P

Current status of WQ goals in this stage

Status of WQ target establishment('21~'30)

Classification	Total	Boundary between cities & provinces	Local government jurisdictional areas
Total	149(5)	37(1)	112(4)
Han river	49(1)	12	37(1)
Nakdong river	41	8	33
Geum river	31(2)	10	21(2)
Yeongsan river	24(2)	7(1)	17(1)
remaining river	4	-	4

^{*} The numbers in parentheses represent the points within the seawater distribution section where water quality goals have not been set

Current status of WQ goals in this stage

WQ goals on boundary between cities & provinces('30)

Geum River(mg/L)							
Watershed	BOD	T-P					
Geumbon C	1.0	0.014					
Geumbon D	1.0	0.019					
Geumbon F	1.0	0.016					
Yoodeung A	1.2	0.032					
Gabcheon A	4.1	0.118					
Geumbon G	2.2	0.062					
Byeongcheon A	2.3	0.105					
Miho B	4.0	0.089					
Geumbon H	2.9	0.083					
Geumbon K	3.0	0.078					

Yeongsan·Seomjin River(mg/L)							
Watershed BOD T-P							
Yeongbon A	2.4	0.082					
Hwangryong A	2.2	0.060					
Yeongbon C	4.6	0.145					
Seombon C	1.4	0.038					
Yocheon B	1.5	0.054					
Seombon E	1.1	0.030					

Han River(mg/L)						
BOD	T-P					
1.1	0.028					
1.0	0.034					
1.7	0.070					
1.4	0.020					
1.0	0.020					
1.7	0.039					
4.0	0.220					
4.0	0.314					
6.2	0.320					
3.8	0.214					
3.9	0.486					
1.4	0.056					
	1.1 1.0 1.7 1.4 1.0 1.7 4.0 4.0 6.2 3.8 3.9					

Nakdong River(mg/L)							
Watershed	BOD	T-P					
Nakbon A	1.4	0.044					
Nakbon F	1.9	0.040					
Geumho B	3.0	0.072					
Geumho C	3.4	0.098					
Nakbon G	2.6	0.056					
Hoicheon A	1.2	0.038					
Milyang A	1.3	0.031					
Nakbon L	2.6	0.049					

TMDL systems in the Unite states

- Background & Overview
 - National Pollutant Discharge Elimination System(1972)
 - NPDES permit program by regulating point sources
 - In the early 1990s, TMDL was officially implemented.
 - TMDL development required by Clean Water Act for streams impaired by a pollutant

TMDL systems in the Unite states

■ TMDL is the calculation of the maximum amount of a pollutant that a water body can receive and still meet WQ standards, and an allocation of that amount to the pollutant's sources.

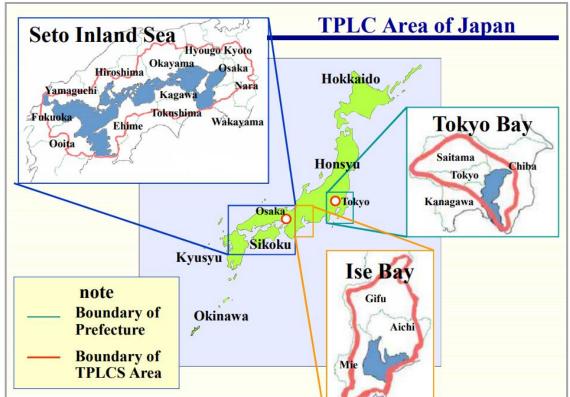
$$TMDL = \sum WLA + \sum LA + MOS$$

- ∑ WLA: Sum of waste load allocations (point sources)
 - Need NPEDS permit
- ∑LA: Sum of load allocations (nonpoint sources)
 - No permit required
- MOS: margin of safety

As of 2021, a total of 74,001 TMDL have been approved in US.

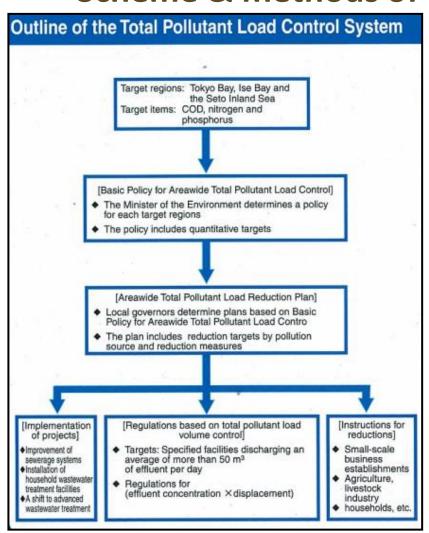
TMDL systems in the Unite states

TMDL process

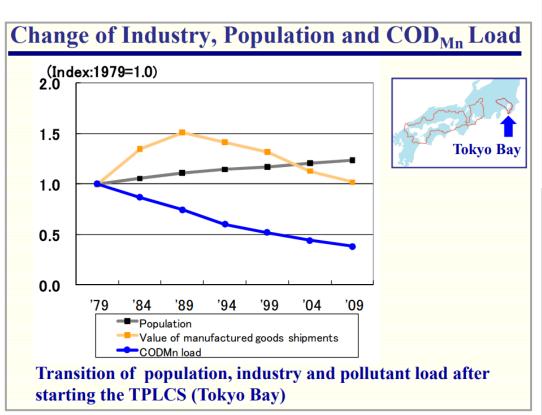

Description of waterbody, **Problem Understanding** pollutant of concern, pollutant sources, and priority ranking Source **Target** Stakeholder Involvement & Public Identification WQS and numeric WQ target Assessment **Loading Capacity** Linkage between Loading (including critical conditions) **Participation** and Waterbody Response LAs WLAs MOS **Allocation Analysis** Seasonal Variation Reasonable Assurance Implementation and **Monitoring Plan** Monitoring Plan 10. Implementation Plan 11. Public Participation TMDL Report and Submittal

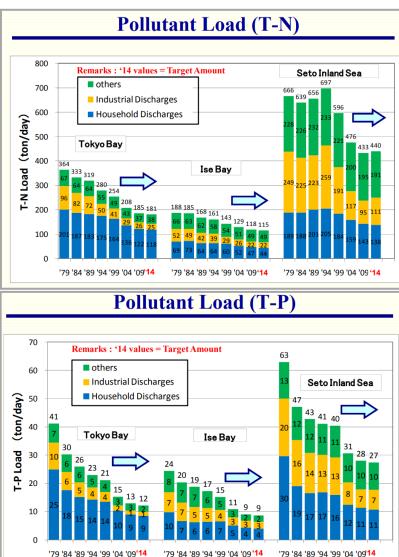
Elements in a TMDL Submittal

TPLCS in Japan


- Total Pollutant Load Control & its System(TPLCS)
 - since 1979(COD) in enclosed 3 water areas
 - All the drainage basin to the specified estuaries(20)
 - From 2001(5th stage), TPLS(N, P) started

TPLCS in Japan


Scheme & methods of TPLCS



- ◆ Methods of Pollutant Reduction
- + Promote the implementation of various <u>waste water</u> <u>treatment facilities/equipments</u>.
- + Ensure the compliance of the regulated point sources with standard of total pollutant load.
- + Develop the waste water guidance for unregulated small-scale facilities, agriculture, the livestock waste and feedings.
- + Promote the dissemination and the communication on the TPLCS.
- + Reinforce the self-purification capability of water by constructing artificial flat, etc.

Improved WQ by TPLCS

a clear tendency of decreasing pollutant loads.

Comparison of TMDL in Korea, the Unite States, and Japan

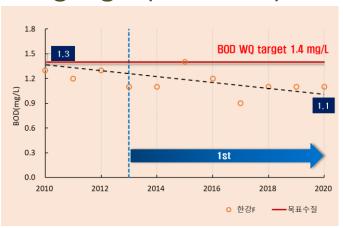
- Similarity: Limitations of concentration based WQ management
 Introduction of a pollutant load-oriented WQ management
- Summary

Classification	Korea	US	Japan	
Strat year	2002	1992	1979	
Objective	Harmony between development and environmental protection	WQ standard attainment	WQ pollution prevention	
Target region 4 major river		Impaired Waterbody	Closed water area - Tokyo bay, Ise bay, The Seto inland sea	
Target parameter BOD, T-P		Parameters exceeding WQ standards such as metals, pathogens, Nutrients, DO, etc	COD, TN, T-P	
Entity in charge of formulating pollution load reduction plans	Local government	State government	Local government	

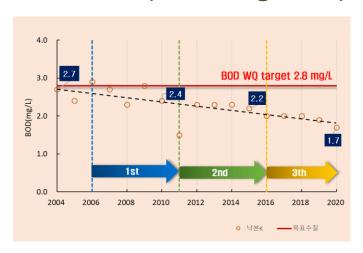
//. Performance of TMDL in Korea

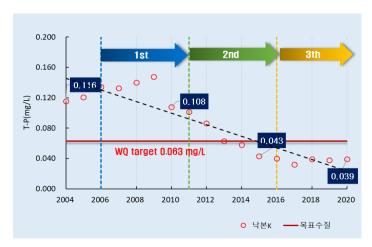
WQ attainment rate of 3th stage

■ As of the year 2020*, the attainment rate for water quality targets at the designated locations is 77% for BOD and 69% for T-P

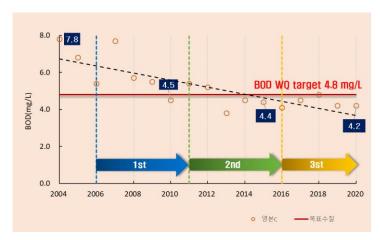

Torgot	Water	Target area				
Target parameter	system	Total	Attainment	Non- attinment	Attainment Rate	Attainment rate in previous stage
	Han	26	19	7	73.1%	-
	Nakdong	41	36	5	87.8%	75.6%
BOD	Geum	30	16	14	53.3%	86.7%
	Yeongsan- Seomjin	22	20	2	90.9%	90.5%
	Total	119	91	28	76.5%	82.6%
T-P	Han	26	17	9	65.4%	-
	Nakdong	41	30	11	73.2%	97.6%
	Geum	30	19	11	63.3%	87.5%
	Yeongsan- Seomjin	22	16	6	72.7%	81.0%
		119	82	37	68.9%	91.4%

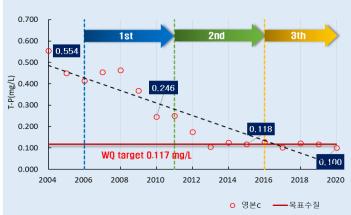
In 2020, the three major rivers marked the conclusion of the third stage, while the Han River concluded only the first stage.


Improvement of Water quality


Hangang F (Han river)

Nakbon K (Nakdong river)


Improvement of Water quality


Geumbon K (Geum river)

Yeongbon C (Yeongsan river)

Decrease of discharge load

 According to the stage assessment, there is a decreasing trend in pollutant discharge loads across watersheds

(kg/day)

Target parameter	Water system	Before 2004	2010	2015	2020
	Han	-	-	152,336	84,827
	Nakdong	176,080	105,711	68,944	64,747
BOD	Geum	126,163	74,272	55,074	53,568
	Yeongsan-Seomjin	51,105	33,339	31,140	30,653
	Total	353,348	213,322	307,494	233,795
	Han	-	-	19,296	5,762
	Nakdong	-	11,121	6,147	4,346
T-P	Geum	-	1,360	956	530
	Yeongsan-Seomjin	-	3,933	1,849	2,181
	Total	-	16,414	28,248	12,819

///. Current issues of TMDL in Korea

Recent criticisms regarding TMDL

- Planning and evaluation based on overly complex formulas
 - Approximately 200 formulas are used in the pollutant load calculation process (source → generated load → discharge load)
- A Reduction plan concentrated on point sources
 - Establishment of allocation and reduction plans focusing on easily manageable public wastewater treatment plants
- Lack of incentives vs. Absence of substantial restriction
 - No rewards for areas that have achieved target water quality; no sanctions for areas that have not met the target

Efforts to improve the TMDL (Future initiative)

- Simplification of TMDL implementation
 - Complex equations alone may not be sufficient to calculate everything that occurs in actual watershed. ⇒ Planning and rapid evaluation based on the latest monitoring data through pilot projects.
- Expansion of recognized reduction activities
 - Expansion of the recognized scope of reduction efforts for nonpoint source pollution through activities such as agricultural BMPs and canal cleaning, rather than relying on facilities like wastewater treatment plants

Thank you for your attentive listening!

psuyoung@korea.kr