# **Updates of Water Environment Governance in Republic of Korea**

Park Tae-Jin, Ph.D

Water Environmental Engineering Research Division

**National Institute of Environmental Research** 

Ministry of Environment, Korea

30 January, 2024

The 19th Annual Meeting in Hayama, Japan

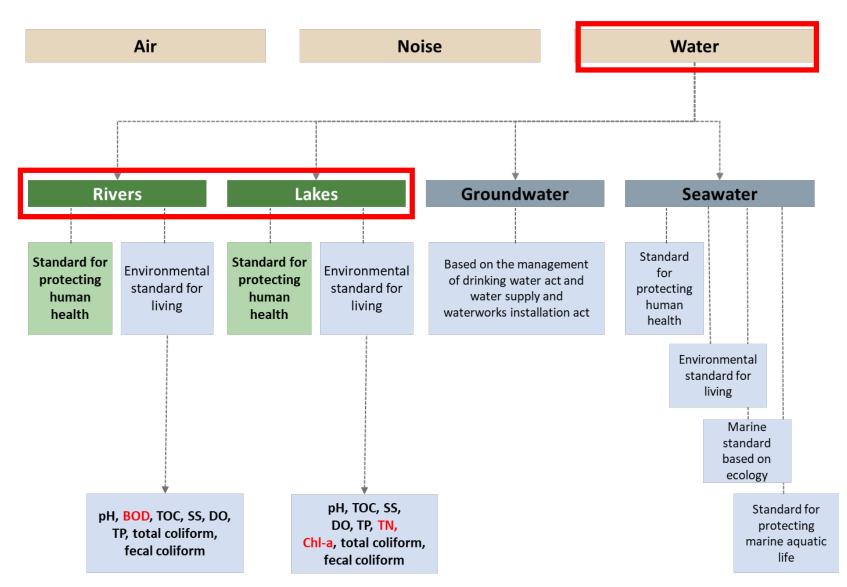
#### **Legal structure**

#### **Environment Policy Framework Act**

- The **primary law** governing environment in Korea
- Purpose: to **prevent environmental pollution**, to protect environment appropriately and to keep the environment sustainable, resulting in letting people enjoy the healthy and amiable environment.
- The basis for regulations

#### **Water Environment Conservation Act**

- Purpose: to **protect people from water pollution**, and to manange the quality of streams, rivers and lakes appropriately, resulting in the benefit from the water environment managed well.
- Regulation of wastewater from the effluent


The goals are set forth in the Environment Policy Framework Act (1978)

Environmental Quality Standards (EQS) are set as the goal for government to prevent environmental pollution, conserve environment appropriately, and allow people to enjoy a healthy and amiable environment.

- Environmental Quality Standard
  - Water Quality Standards (WQS) for protection of human health
  - Water Quality Standards (WQS) for living environment
- Discharge Permits are set forth in Water Environment Conservation Act since 1970

Discharge Permits regulate wastewater from specified factories/establishments to achieve EQS and uniformly set in nationwide.

#### **Environment Policy Framework Act**



### Water Quality Standard for protecting human health

| Pollutants                       | Standard Value<br>(mg/L) | Pollutants                               | Standard Value<br>(mg/L) |
|----------------------------------|--------------------------|------------------------------------------|--------------------------|
| Cadmium (Cd)                     | ≤ 0.005                  | Carbon Tetrachloride (CCl <sub>4</sub> ) | ≤0.004                   |
| Arsenic (As)                     | ≤ 0.05                   | 1,2-Dichloroethylene                     | ≤0.03                    |
| Cyanide (CN)                     | ND (LOD 0.01)            | Tetrachloroethylene (PCE)                | ≤0.04                    |
| Mercury (Hg)                     | ND (LOD 0.001)           | Dichloromethane                          | ≤0.02                    |
| Organic Phosphorus               | ND (LOD 0.0005)          | Benzene                                  | ≤0.01                    |
| Polychlorinated Biphenyls (PCB)  | ND (LOD 0.0005)          | Chloroform                               | ≤0.08                    |
| Lead (Pb)                        | ≤ 0.05                   | Di-Ethylhexyl Phthalate (DEHP)           | ≤0.008                   |
| Hexachromium (Cr <sup>6+</sup> ) | ≤ 0.05                   | Antimony (Sb)                            | ≤0.02                    |
| Anionic Surfactant (MBAS)        | ≤ 0.5                    | 1,4-Dioxane                              | ≤0.05                    |
| Formaldehyde                     | ≤ 0.5                    | Hexachlorobenzene (HCB)                  | ≤0.00004                 |

#### Water Quality Standard for Living Environment (River)

|             | Status | Standard |               |               |              |              |              |                                    |                              |                |
|-------------|--------|----------|---------------|---------------|--------------|--------------|--------------|------------------------------------|------------------------------|----------------|
| Grade       |        | рН       | BOD<br>(mg/L) | TOC<br>(mg/L) | SS<br>(mg/L) | DO<br>(mg/L) | TP<br>(mg/L) | Colif<br>MPN/<br>Total<br>Coliform | form  100mL  Fecal  Coliform |                |
| Very Good   | la     |          | 6.5~8.5       | ≦ 1           | ≦ 2          | ≦ 25         | ≧ 7.5        | ≦ 0.02                             | ≦ 50                         | <b>≦</b> 10    |
| Good        | Ib     |          | 6.5~8.5       | <b>≦</b> 2    | ≦ 3          | ≦ 25         | ≧ 5.0        | ≦ 0.04                             | <b>≦</b> 500                 | <b>≦</b> 100   |
| Fairly Good | II     |          | 6.5~8.5       | ≦ 3           | <b>≦</b> 4   | ≦ 25         | ≧ 5.0        | ≦ 0.1                              | <b>≦ 1,000</b>               | ≦ 200          |
| Fair        | III    | (1.1)    | 6.5~8.5       | <b>≦</b> 5    | ≦ 5          | ≦ 25         | ≧ 5.0        | ≦ 0.2                              | <b>≦</b> 5,000               | <b>≦ 1,000</b> |
| Fairly Poor | IV     |          | 6.0~8.5       | ≦ 8           | ≦ 5          | ≦ 100        | ≧ 2.0        | ≦ 0.3                              |                              | -              |
| Poor        | V      |          | 6.0~8.5       | <b>≦10</b>    | ≦ 8          | -            | ≧ 2.0        | ≦ 0.5                              | -                            | -              |
| Very Poor   | VI     |          | -             | > 10          | > 8          | -            | ≧ 2.0        | ≦ 0.5                              | -                            | -              |

#### Water Quality Standard for Living Environment (Lake)

|             |     | Standard |         |               |                       |              |               |              |            |                   |                   |
|-------------|-----|----------|---------|---------------|-----------------------|--------------|---------------|--------------|------------|-------------------|-------------------|
| Grade       |     | Status   | рН      | TOC<br>(mg/L) | SS<br>(mg/L)          | DO<br>(mg/L) | TP<br>(mg/L)  | TN           | Chl-a      | Coliform M        | IPN/100mL         |
|             |     |          |         |               |                       |              |               | (mg/L)       | (mg/m³)    | Total<br>Coliform | Fecal<br>Coliform |
| Very Good   | la  |          | 6.5~8.5 | ≦ 2           | ≦1                    | ≧ 7.5        | <b>≦</b> 0.01 | <b>≦</b> 0.2 | ≦5         | ≦50               | <b>≦</b> 10       |
| Good        | lb  |          | 6.5~8.5 | ≦ 3           | ≦ 5                   | ≧ 5.0        | ≦ 0.02        | <b>≦</b> 0.3 | <b>≦</b> 9 | ≦500              | <b>≦</b> 100      |
| Fairly Good | II  |          | 6.5~8.5 | ≦ 4           | ≦ 5                   | ≧ 5.0        | ≦<br>0.03     | ≦ 0.4        | ≦14        | <b>≦ 1,000</b>    | ≦ 200             |
| Fair        | III |          | 6.5~8.5 | ≦ 5           | ≦15                   | ≧ 5.0        | ≦<br>0.05     | ≦ 0.6        | ≦20        | <b>≦</b> 5,000    | <b>≦</b> 1,000    |
| Fairly Poor | IV  |          | 6.0~8.5 | ≦ 6           | ≦ 15                  | ≧ 2.0        | ≦<br>0.10     | <b>≦</b> 1.0 | ≦35        | -                 | -                 |
| Poor        | v   |          | 6.0~8.5 | ≦8            | No floating<br>waste- | ≧ 2.0        | ≦<br>0.15     | ≦ 1.5        | ≦70        | -                 | <del>-</del> 7    |
| Very Poor   | VI  |          | -       | > 8           | -                     | < 2.0        | > 0.15        | > 1.5        | >70        | -                 | -                 |

### **Status of Water Quality in accordance with Grade**

| Grade       |      | Status of Water Quality                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Very Good   | la   | <ul> <li>The ecosystem is in a pristine state with abundant dissolved oxygen and absence of pollutants</li> <li>Domestic water use is suitable after simple water treatment processes such as filtration and disinfection</li> </ul>                                                                                                                                                                                    |
| Good        | lb   | <ul> <li>The ecosystem is in close proximity to a clean state with a high level of dissolved oxygen and minimal presence of pollutants.</li> <li>After common water treatment processes such as filtration, sedimentation, and disinfection, it can be used as domestic water for daily living."</li> </ul>                                                                                                             |
| Fairly Good |      | <ul> <li>The ecosystem is in a relatively good state with a high level of dissolved oxygen, although there are slight traces of pollutants.</li> <li>After common water treatment processes such as filtration, sedimentation, and disinfection, it can be used as domestic water or recreational water for activities such as swimming."</li> </ul>                                                                    |
| Fair        | 1111 | <ul> <li>Due to typical pollutants leading to the consumption of dissolved oxygen, this general ecosystem can be subjected to advanced water treatment processes such as filtration, sedimentation, activated carbon input, and disinfection.</li> <li>After high-level purification, the water can be utilized for domestic purposes or, following standard water treatment, used for industrial purposes."</li> </ul> |
| Fairly Poor | IV   | <ul> <li>Due to a significant amount of pollutants leading to the consumption of dissolved oxygen, this general ecosystem can be subjected to advanced water treatment processes such as filtration, sedimentation, activated carbon input, and disinfection.</li> <li>After high-level purification, the water can be used for industrial purposes."</li> </ul>                                                        |
| Poor        | V    | <ul> <li>The ecosystem, characterized by the depletion of dissolved oxygen due to a substantial amount of pollutants, does not cause discomfort in the daily lives of the public, such as during walks.</li> <li>After specific water treatment processes like activated carbon input, reverse osmosis, and other advanced methods, the water can be used for industrial purposes."</li> </ul>                          |
| Very Poor   | VI   | • In water heavily polluted with virtually no dissolved oxygen, it becomes challenging for fish to survive. 8                                                                                                                                                                                                                                                                                                           |

#### The framework of Setting Water Quality Standard





#### STEP 1

Selecting population for candidate pollutants

#### STEP 2

Prioritizing the pollutants through CRS & preliminary investigation

#### STEP 3

Nationwide monitoring of 4 major rivers

#### STEP 4

Human health risk assessment & Ecotoxicity

#### STEP 5

Cost-benefit analysis & comparison with drinking WQS

#### STEP 6

Audit

# Environmental Agencies River Environmental Research Centers Local government etc

**Nationwide Water Quality Monitoring** 



Instruction/ guidance, notice, technical advice for WQ monitoring

#### **National Institute of Environmental Research**

(Regulated pollutants) Compiling nationwide WQ data Assessing the status of water quality in 4 river basins (Unregulated pollutants) Monitoring and deriving WQS

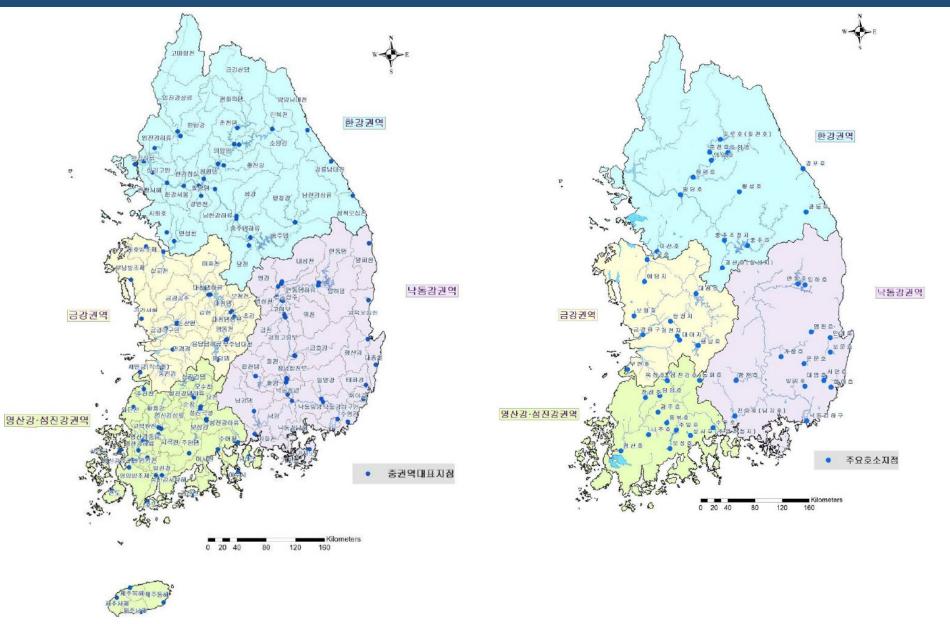


#### **Ministry of Environment**

(Regulated pollutants) Development of improvement plan (Unregulated pollutants) Legalizing unregulated pollutants as WQS

# Assessing water quality from nationwide monitoring about regulated pollutants

- Purpose
  - To evaluate the achievement of 'goal criteria' nationwide
    - Goal criteria

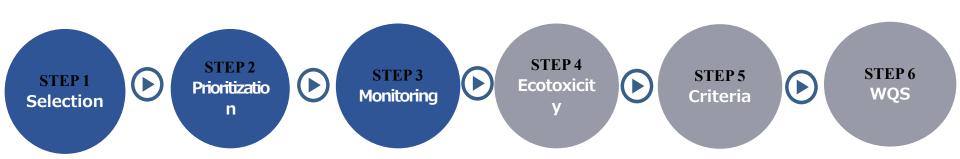

· River : BOD, TP

· Lake : TOC, TP

- **Sites** 
  - 115 river and streams in middle basin
  - 49 main lakes



**Evaluation of nationwide water quality** 




### Achievement percentage of goal criteria in 2022

|         | Parameter | Total                  | Han<br>River          | Nakdong<br>River      | Geum<br>River         | Youngsan<br>River     |
|---------|-----------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Rivers  | BOD       | 81/115<br><b>(70%)</b> | 25/29<br><b>(86%)</b> | 24/32<br><b>(75%)</b> | 16/21<br><b>(76%)</b> | 16/33<br><b>(48%)</b> |
| Tarvers | TP        | 61/115<br><b>(53%)</b> | 15/29<br><b>(52%)</b> | 20/32<br><b>(63%)</b> | 18/21<br><b>(86%)</b> | 8/33<br><b>(24%)</b>  |
| Lakes   | тос       | 24/49<br><b>(49%)</b>  | 9/13<br><b>(69%)</b>  | 4/14<br><b>(29%)</b>  | 8/10<br><b>(80%)</b>  | 3/12<br><b>(25%)</b>  |
|         | TP        | 9/49<br><b>(18%)</b>   | 1/13<br><b>(8%)</b>   | 4/14<br><b>(29%)</b>  | 3/10<br><b>(30%)</b>  | 1/12<br><b>(8%)</b>   |

```
(Rivers) BOD 78%(`21) \rightarrow 70%(`22), TP 51%(`21) \rightarrow 53%(`22) (Lakes) TOC 49%(`21) \rightarrow 49%(`22), TP 18%(`21) \rightarrow 18%(`22)
```

#### Monitoring unregulated micropollutants



#### STEP 1

**Selecting population for candidate pollutants** 

#### STEP 2

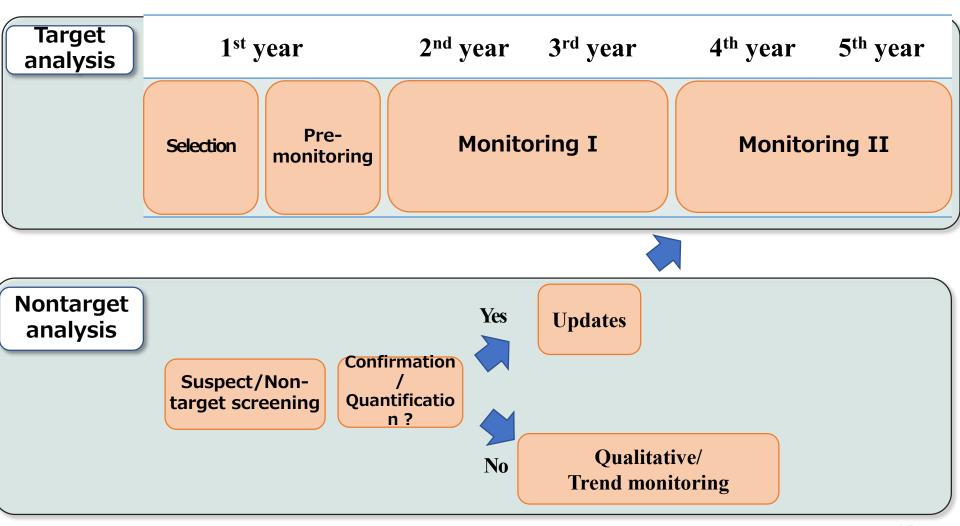
Prioritizing the pollutants through CRS & preliminary investigation

#### STEP 3

**Nationwide monitoring of 4 major rivers** 

#### STEP 4

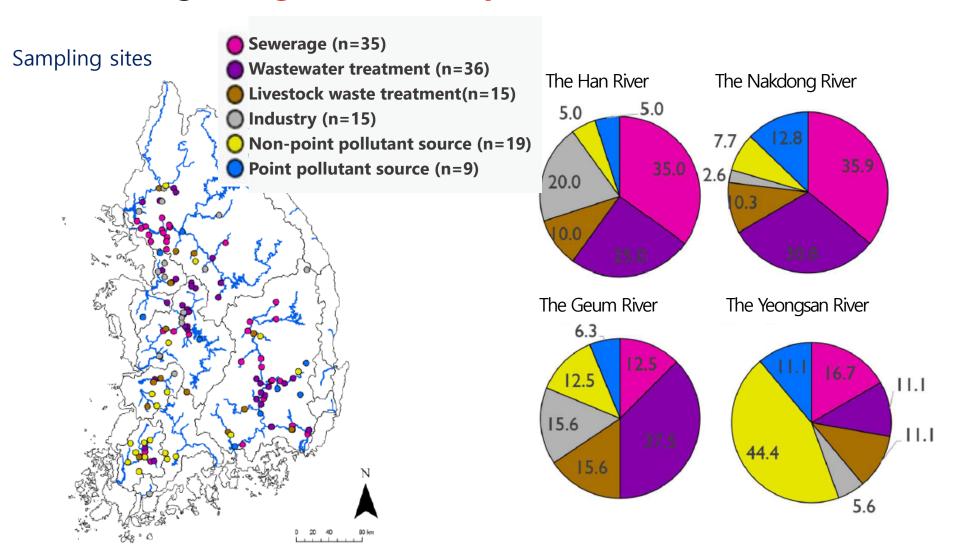
**Human health risk assessment & Ecotoxicity** 


#### STEP 5

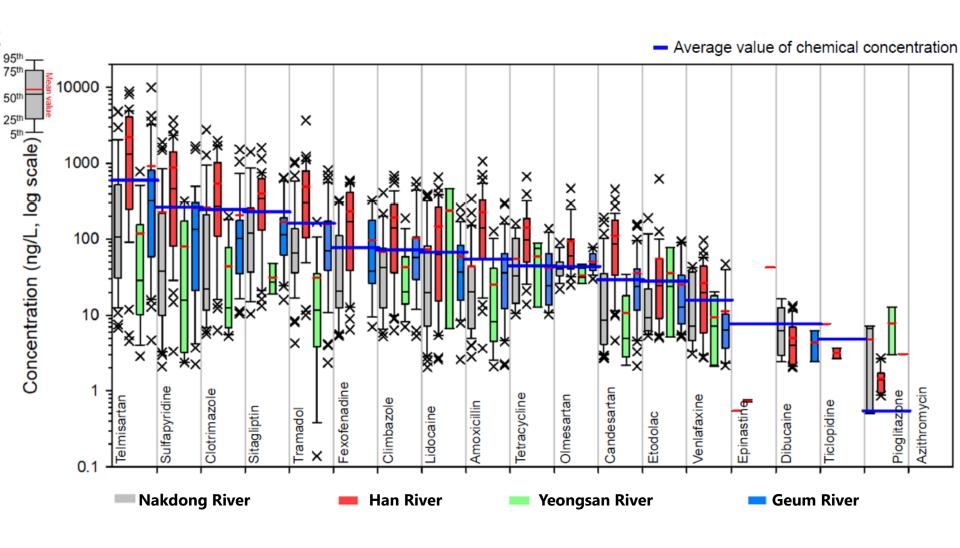
Cost-benefit analysis & comparison with drinking standards

#### STEP 6

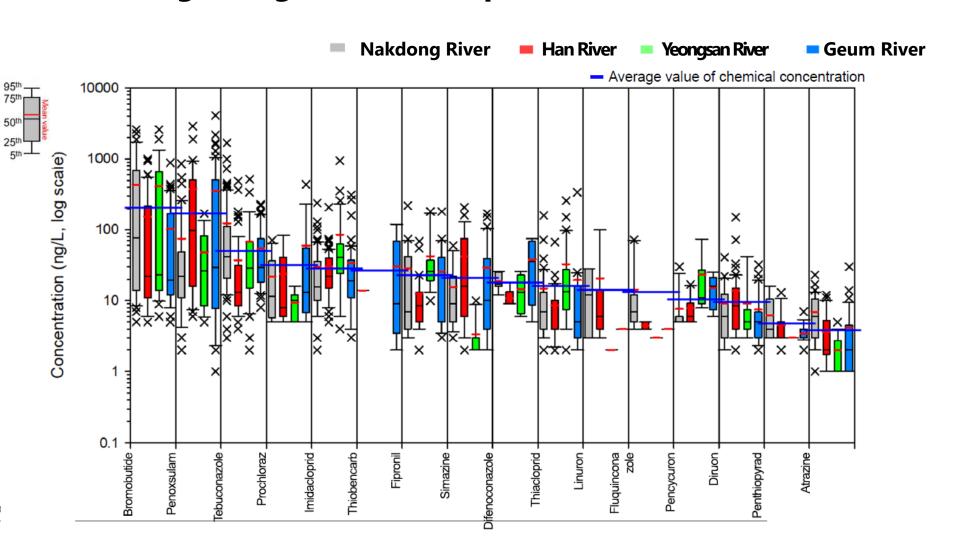
**Audit** 


Framework of monitoring system for unregulated micorpollutant




#### (Regulated pollutants)

- When some parameter exceeds WQS frequently, the area should be designated as 'special measures zone' to protect environment.
  - Mitigation measures should be established.
- Following the measures, action such as compilation of inventory of manufacturers and other point sources near the site should be taken.


#### Monitoring unregulated micorpollutants



#### Monitoring unregulated micropollutant (Pharmaceuticals)



#### Monitoring unregulated micropollutant (Pesticides)



# 4. Implement measures to address issues

#### (Regulated pollutants)

- The related laws should be reviewed.
- When the goal criteria is not achieved, plans for measures have to be established and if necessary, implemented.

#### (Unregulated pollutants)

- When hot issues related to chemicals in rivers come out, monitoring should be conducted to develop policy.
  - ex) PFAS, Microplastics etc

## 5. Evaluating outcomes and revising policies

#### (Regulated pollutants)

- To address nutrients in water, the related laws were revised.
  - Effluent standard of sewage treatment plants was more strict.
     (2.0 mg/L→ 0.2 mg/L in facilities >500m³/d)
- When the reason is found, follow-up measures such as TMDL have been implemented to keep WQS.

#### (Unregulated pollutants)

- WQS or discharge permit is reviewed and if necessary, revised.
  - ex) The revision of the law to introduce PFAS in discharge permit is currently under review.

# 6. Challenges and future plans

#### **Challenges**

- Not easy to increase the number of WQS due to dualized legal system
- Need to introduce WQS to protect aquatic life
- Need to use more parameters to evaluate water quality
- Since there are many divisions related to water quality management in MOE, it is hard to cooperate with each other, making it difficult to find some reasons why the water quality is better or deteriorated

# 6. Challenges and future plans

#### **Future plans**

- Increase the number of WQS to protect human health (HH) and aquatic life (AL) by 2025 (HH 20 $\rightarrow$ 30, AL 0  $\rightarrow$ 8)
- Expand water quality monitoring centers nationwide by 2026 to investigate unregulated micropollutants





**Waegan Water Quality Analysis Center** 

**Maeri Water Quality Analysis Center** 

# Thank you for your attention.